Long-term studies of solitary bees

What the euglossines are telling us

David W. Roubik
Smithsonian Tropical Research Institute; Balboa, Republic of Panama

The Historical Perspective

- Studies in Panama (1954-2004)
- Taxonomic progress
- Chemical components of orchid
 and aroid fragrances that attract male euglossines
- User/loser friendly multipurpose bees

The Community Perspective

- How effective ARE baiting studies?
- How many species?
- How diverse?

Euglossine bee communities in five Neotropical forests
(In each site, a few euglossine species do not come to any bait.)
No. individuals, spp. Baiting* Locality No. Species est, S.D., max** Simpson D§
21,842, $44 \quad 56,16,365 \quad$ PAN: BCI 44,$0 ; 44$ (49) 0.853
2418, $38 \quad$ 26, 8, $365 \quad$ BR: Manaus 39,$2 ; 43$

1121, 4
18, 5, 6
EC: Yasuní
46, 3; 52 0.837

4, 5, 5
BO: Madidi
38, 6; 50
0.912

951, 30
1, 5, 1
CR: Las Cruces
37,
0.829

195, $33 \quad 2,5,2$
PAN: Santa Rita 39, 2; 43
0.924

No. baiting days, No. different chemicals employed, and period performed (days)
${ }^{* *}$ Chao estimate of total species; given by Sest = Sobs $+(a 2 / 2 b)$, where $a=$ species observed
only once, $b=$ species observed only twice, $S=$ total species (estimateobserved).
The SDev is derived from variance, given by Vest $=b[a / b / 4) 4+(a / b) 3+(a / b / 2) 2]$; Southwood and Henderson 2000 § Simpson Diversity, unbiased estimator; given by $D=(N / N-1)\left(1-\sum f 2\right)$,
where f is the frequency of individual species in a collection of N individuals; Lande et al. 2000.

The Ecological Perspective

- What is a pollination niche?
- How do they arise?
- Where do the participants come from?
- Niche taxonomy?

